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ABSTRACT 

The paper contains exact expressions for the first two moments of the 

maximum likelihood estimates of the combined information measure 

introduced by Kaur (1983). Further, If utility Schemes are also associated 

with the probability schemes, then one gets the generalized combined 

‘useful’ information measure. Exact expressions for the first two moments 

of the maximum likelihood estimates of this measure are also derived. 

 

1. INTRODUCTION 

Shannon’s (1948) entropy measure 
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generalized by Belis and Guiasu (1968) defined ‘useful’ information as: 
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by attaching a utility )0(>iu to the event occurring  with  probability ip . 

Following the same idea Emptoz (1976) and Sharma et al. (1978) 
generalized the Havrda- Charvat (1967) entropy measure 
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through the introduction of utilities iu  to 
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to which function they also gave the name of ‘useful’ information. 

Kaur (1983) defined a combined information measure of two probability 

distributions 
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of a set of k  mutually exclusive and exhaustive events as: 
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If we attach utilities 0),,.......,,( 21 >= ik uuuuU  and 

,0),,.......,,( 21 >= ik vvvvV  to the probability distributions P  and Q , we 

get the measure 
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where ,iii vuw = which may call the combined ‘useful’ information 

measure in analogy with Belis and Guiasu (1968). 

Putting 0,1 == γβ  and then limiting α  tends to 1, Kaur’s measure yields 
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which is Kullback’s (1959) measure of relative information that the 

distribution ).......,,( ,21 kpppP =  provides about the distribution 

).,......,,( 21 kqqqQ =
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We may, therefore, regard Kaur’s measure as a generalized measure of 
the relative information that the distribution P

 
provides about the 

distribution Q . If P  is the distribution determined on the basis of an 

experiment, then this measure may be considered as measure of the 
information on Q  furnished by the experiment. 

Moments of the statistical estimates of Shannon entropy and );( PUI have 

been studied by several authors. The work in this direction started with 

the papers of Miller (1955) and Basharin (1959), who derived asymptotic 

mean and variance of an of an M.L.E. of Shannon entropy. Exact 

expressions for these moments have been obtained by Rogers and Green 

(1955) and Hutcheson and Shenton (1974). Further in a work, Sharma et 

al. (1977) derived asymptotic mean and variance of M.L.E. of );( PUI . 

Exact expressions for these moments have been obtained by Sharma and 

Mohan (1978, 79). 

Applications of );(
,,

QPI
γβα  and ),;(

,,
QPWI

γβα have been made 

recently in the theory of questionnaire  (refer Picard 1972) and in the 

analysis of business and Accounting data (refer Sharma et al. 
(1976,1978). Thus there arose a need of further studying statistical 

estimators of );(
,,

QPI
γβα  and ),;(

,,
QPWI

γβα . 

We have obtained in section 2 the first two moments of the maximum 

likelihood estimates (M.L.E.) of  ),;(,, QPWI γβα . By putting ,1=iw we 

also get first two moments of the ... elm of  );(
,,

QPI
γβα  which in section 3. 

 

2. MOMENTS OF THE M.L.E. OF ),;(
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and sni '  follow the multinomial distribution. Then (2.1) can be written 

as: 
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Let us consider the parameter is a natural number and then differentiating 
(2.4) α
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Setting each 0=it in (2.5) gives 
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where ∆  is the usual different operator; and α0r∆  is the thr −  difference 

operator of α0 . 

Now, differentiating (2.5)  α  times w.r.t.
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Now taking expectations on both sides of (2.2), we get 
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Invoking (2.7), this proves 
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Further, we have  
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Taking expectation both the sides and using (2.7) and (2.9), (2.12) 

becomes 
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3. FIRST TWO MOMENTS OF THE M.L.E. OF ),;(,, QPWI γβα  

For  ),;(),,......,2,1(,1
,,

QPWIkiwi
γβα==   reduces   to  ).,(

,,
QPI

γβα  

Hence, the first two 
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moments of the ... elm M.L.E. of to  ),(
,,

QPI
γβα are obtained by putting  

1=iw in (2.11)  and (2.13) respectively, and are given by: 
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